1 Efisiensi bahan bakar mesin dua tak lebih rendah dibandingkan mesin empat tak. 2. Mesin dua tak memerlukan percampuran oli dengan bahan bakar (oli samping/two stroke oil) untuk pelumasan silinder mesin. · Kedua hal di atas mengakibatkan biaya operasional mesin dua tak menjadi lebih lebih tinggi dibandingkan biaya operasional mesin empat tak. JAKARTA, - Pada bahasan Otopedia kali ini, tim redaksi Kompas Otomotif membahas soal prinsip kerjan mesin sepeda motor. Pada umumnya, mesin sepeda motor dibedakan dalam dua jenis, yaitu 2-tak dan 4-tak. Perbedaan kedua mesin ini terletak dari cara kerjanya. Mesin 2-tak hanya memiliki dua langkah dalam satu siklus pembakaran. Sedangkan mesin 4-tak punya empat langkah, yaitu hisap, kompresi, usaha, dan siklus pembakarannya lebih singkat komponen mesin 2-tak lebih sedikit ketimbang 4-tak. Hal yang paling terlihat ialah mesin 2-tak tidak punya katup valve masuk dan buang. Baca juga Apakah Fungsi Koil pada Sepeda Motor dan Bagaimana Cara Kerjanya? Autoexpose Upward stroke mesin 2-tak Drs. M Suratman dalam bukunya "Servis dan Teknik Reparasi Sepeda Motor" mengatakan, tugas valve digantikan oleh lubang atau pintu di dinding silinder yang berkerja berdasarkan gerak naik turun piston."Pemasukan dan pembuangan gas diatur melalui saluran di sekitar dinding silinder. Lubang-lubang ini dapat membuka dan menutup karena gerakan piston ruang silinder," dikutip Senin 28/12/2020. Perbedaan lainnya ialah mesin 2-tak ialah butuh oli samping. Sebab pelumasan mesin berlangsung dari atas, artinya pelumas datang dari atas piston bersama datangnya gas bensin. "Oleh karena itu, bahan bakar untuk mesin bensin dua langkah adalah bensin yang sudah dicampur cengan oli. Di ruang engkolnya tidak terdapat minyak pelumas," tulis buku tersebut. Berikut prinsip kerja mesin 2-tak 1. Langkah pertama
danmesin diesel 2 langkah (2 tak). untuk postingan kali ini saya ingin membahas PRINSIP KERJA MESIN DIESEL 4 langkah atau sering disebut mesin diesel 4 tak. 1. Daur/prinsip kerja mesin diesel 4 langkah Urutan kejadian yang berulang secara teratur dan dalam urutan yang sama disebut sebuah daur (Cycle). Beberapa kejadian berikut, membentuk
Cara Kerja Mesin 2 Tak – Selain mesin 4 tak, maka jenis mesin yang populer adalah mesin 2 tak. Mesin 2 tak ini banyak digunakan pada motor keluaran lama. Lalu bagaimana prinsip atau cara kerja dari mesin 2 tak? Dalam mesin 2 tak, satu kali perputaran poros engkol/crankshaft 360 derajat ada 4 transisi. Jadi setengah putaran 180 derajat lakukan 2 transisi. Di mana, pada mesin 2 tak tidak menggunakan katup/valve dan noken as/camshaft seperti pada mesin 4 tak. Untuk mengganti kinerja katup maka pada mesin 2 tak menggunakan membran yang ada di sesudah karburator. Dengan cara kerja mesin 2 tak tersebut maka mesin lebih responsive dan akselerasinya bagus. Namun, mesin ini mengeluarkan tenaga yang besar di saat perputaran/RPM tinggi sehingga membuat mesin mengkonsumsi bahan bakar yang agak banyak. Selain bahan bakar, mesin ini membutuhkan bensin yang dioplos dengan oli spesial yang umum disebutkan oli samping untuk sekaligus memulasi sisi dalam mesin. Jadi oli mesin cuman memulasi sisi transmisi. Itu lah mengapa mesin 2 tak fogging atau berasap knalpotnya, sebab membakar oli samping. Mesin 2 tak condong lebih kecil dan enteng dibanding mesin 4 tak. Rasio berat pada tenaga power to weight ratio yang dihasilkan oleh mesin dua tak lebih bagus dibanding mesin empat tak. Oleh karena itu perfoma mesin 2 tak lebih maksimal. Cara kerja atau konsep kerja mesin 2 tak ini dapat disebutkan cukup sederhana dan simpel. Yang mana pada mesin 2 tak hanya terdiri seperti poros engkol, piston, dan beberapa beberapa komponen yang lain. Perbedaannya dengan mesin yang lain adalah cara kerja mesin 2 tak tidak membutuhkan katup. Untuk lebih jelasnya terkait cara kerja mesin 2 tak akan diulas lebih lengkap pada artikel berikut ini. Sesuai ulasan sebelumnya bahwasanya untuk melakukan transisi, maka pada mesin 2 tak hanyak membutuhkan satu kali piston naik turun atau satu putaran poros engkol. Oleh karena itu pada cara kerja mesin 2 tak terdapat dua langkah sekaligus ketika piston bergerak baik dari titik mati atas ke titik mati bawah atau sebaliknya. Untuk lebih jelasnya sebagai berikut 1. Piston Bergerak TMB Titik Mati Bawah ke TMA Titik Mati Atas Cara kerja mesin 2 tak yang pertama ialah upward stroke atau langkah piston naik. Dengan kata lain ialah piston yang bergerak dari status TMB titik mati bawah ke TMA titik mati atas. Waktu piston ada pada TMB di dalam ruang bakar telah ada kombinasi udara dan bahan bakar yang terisi melalui transisi awal. Kombinasi udara dan bahan bakar ini siap untuk di kompresi. Saat piston bergerak ke TMA maka dinding piston akan menutup dua aliran yaitu transfer port masuk dan exhaust port lubang buang. Akibatnya kombinasi udara dan bahan bakar yang ada di dalam ruangan bakar dapat dikompresi. Di lain sisi, gerakan piston ke TMA akan jadi besar volume crank kasus mengakibatkan terjadinya kevakuman di dalam crankcase. Kevakuman ini akan mengisap kombinasi udara dan bahan bakar dari karburator ke dalam crankcase. Proses Kerja Saat piston bergerak dari TMB ke TMA maka bahan bakar dan pelumas akan terhisap ke dalam ruang bilas. Pencampuran ini dikerjakan oleh karburator atau mekanisme injeksi. Saat melalui lubang penghasilan dan lubang pembuangan, piston akan mengkompresi campuran bahan bakar dan udara yang terjerat dalam ruang bakar. Piston tetap akan mengkompresi gas dalam ruangan bakar sampai ke TMA. Sesaat sebelum piston mencapai TMA, busi akan berpijar untuk membakar gas dalam ruangan bakar. Waktu nyala busi terjadi sebelum piston mencapai TMA. Hal ini bertujuan agar tekanan puncak pada proses pembakaran dalam ruang bakar bisa berlangsung saat piston mulai bergerak dari TMA ke TMB. Sebab proses pembakaran memerlukan wkatu agar bisa membuat campuran bahan bakar dan udara terbakar maksimal oleh nyala percikan api busi. 2. Piston Bergerak dari TMA Titik Mati Atas ke TMB Titik Mati Bawah Downward stroke atau langkah piston turun ialah gerakan piston dari TMA ke TMB sebab dorongan dari pembakaran mesin merupakan salah satu cara kerja mesin 2 tak. Proses ini dimulai saat busi memercikan api yang terjadi pada proses upward stroke usai atau piston yang mendesak kombinasi udara dan bensin hingga saat busi berpijar automatis pembakaran akan berlangsung. Dari hasil pembakaran ini maka akan terbentuk energi pengembangan dan gas sisa pembakaran. Energi pengembangan akan digunakan untuk menggerakkan piston bergerak ke TMB mengakibatkan ada pengecilan volume crank kasus. Di dalam crankcase ada kombinasi udara dan bahan bakar yang telah berisi di saat langkah upward stroke. Akibatnya terjadi pengecilan volume crankcase yang akan menggerakkan kombinasi udara dan bahan bakar bergerak ke aliran yang tebuka. Aliran transfer port terbuka sementara exhaust tertutup oleh dinding piston yang bergerak ke TMB. Hal ini akan membuat kombinasi udara dan bensin yang ada di dalam crankcase bergerak ke transfer port dan masuk ke ruang bakar. Sementara itu gas sisa pembakaran di dalam ruangan bakar akan tergerak ke luar oleh tekanan kombinasi udara dan bahan bakar yang masuk lewat transfer port. Hal ini disebutkan pembilasan sebab gas tersisa pembakaran akan dibilas/dikeluarkan oleh gas baru yang siap untuk dikompresi. Kombinasi udara dan bahan bakar yang ada di dalam ruangan bakar, siap untuk jalankan transisi selanjutnya. Dan demikianlah transisi mesin 2 tak lagi berjalan. Proses Kerja Saat bergerak dari TMA ke TMB, piston akan mendesak ruangan bilas yang ada di bagian bawahnya. Semakin jauh piston meninggalkan TMA ke arah TMB maka semakin bertambah juga desakan di ruangan bilas. Di titik spesifik, piston ring piston akan melalui lubang pembuangan gas dan lubang masuk gas. Posisi lubang bergantung dari design. Biasanya ring piston akan melalui lubang pembuangan lebih dulu. Saat ring piston melalui lubang pembuangan, gas yang ada dalam ruangan bakar akan keluar lewat lubang pembuangan. Di saat ring piston melalui lubang masuk maka campuran bahan bakar dan udara yang tertekan dalam ruangan bilas akan terhisap masuk di dalam ruang bakar dan sekalian mendorong keluar gas sisa pembakaran yang ada dalam ruangan bakar ke lubang pembuangan. Piston mendesak ruang bilas sampai titik TMB dan memompa campuran bahan bakar dan udara dari dalam ruang bilas ke arah dalam ruangan bakar. Diatas merupakan ulasan terkait cara kerja mesin 2 tak dimulai dari pemahaman, konsep kerja dan gambarnya. Cara kerja mesin 2 tak ini sedikit berbeda dikarenakan proses transisi setiap satu siklus hanya membutuhkan satu kali gerakan piston naik turun. Semoga dapat menambah wawasan pengetahuan. Jadikenapa motor dengan mesin 2 tak harus memakai oli pelumas samping selain pelumas mesin sudah jelas, karena model kerja yang seperti itu membuat tenaga yang dihasilkan lebih besar. Perbandingannya pada mesin 4 tak dalam 2 kali putaran crankcase = 1 x kerja sedangkan untuk 2 tak 2 kali putaran crankcase = 2 x kerja.

Mesin 2-tak atau motor bakar dua langkah adalah mesin pembakaran yang dalam satu siklus pembakaran akan mengalami dua langkah piston. Bahan bakar mesin 2-tak dianggap lebih boros ketimbang mesin 4 tak. Mengutip dari buku Mesin Penggerak Utama Motor Diesel oleh Jusak Johan Handoyo, mesin 2-tak merupakan pengembangan dari mesin 4-tak, di mana proses kerjanya lebih sederhana pada dimensi unit mesin yang sama, tapi menghasilkan tenaga yang lebih kuat. Mesin 2-tak juga digunakan dalam mesin diesel, terutama untuk kendaraan kecepatan rendah seperti kapal besar dan 2-tak memiliki beberapa kelebihan, yaituPerawatan mesin akan lebih mudah karena konstruksinya lebih sederhanaOli mesin hanya digunakan untuk melumasi mesin bagian bawah yang membuatnya lebih tahan lamaAkselerasi kendaraan yang menggunakan mesin 2-tak akan lebih cepat di jalan yang datarKnalpot tidak akan mudah keropos karena telah dilumasi oleh butiran oli sisa di atas menjadi alasan mengapa mekanisme mesin 2-tak lebih efisien. Hingga kini, mesin 2-tak masih digunakan pada banyak kendaraan. Seperti apa cara kerja mesin 2-tak? Simak penjelasan selengkapnya di bawah ini!Cara Kerja Mesin 2 TakMengutip dari buku Mencari dan Memperbaiki kerusakan Sepeda Motor Sepeda Motor 4 tak oleh Toto Suwanto, dijelaskan bahwa terdapat 2 langkah dalam cara kerja mesin Isap Upward StrokeLangkah isap merupakan langkah pertama dalam sistem kerja mesin 2-tak. Pada langkah ini, piston bergerak naik dari TMB menuju TMA. Saat piston posisinya berada di TMB, bahan bakar yang berada di bawah piston didorong keluar dari saluran pembilasan. Kemudian, bahan bakar yang keluar dari saluran saluran pembilasan didorong piston sampai posisi TMA. Ketika sudah mendekati posisi TMA, piston akan menutup saluran pembuangan dan saluran pembesarannya. Melalui proses tersebut, pemasukan bahan bakar akan terbuka, menyebabkan bahan bakar masuk melalui saluran yang berada di bawah piston. Bahan bakar yang berada di bawah piston akan ditekan naik oleh piston mencapai posisi TMA. Tekanan dalam silinder akan meningkat, kemudian bunga api dari busi membakar bahan bakar dan udara menjadi Buang Downward StrokeLetusan yang dihasilkan dari tekanan silinder yang meningkat digunakan untuk mendorong piston bergerak turun dari TMA menuju TMB. Piston yang bergerak turun akan mendorong bahan bakar yang terletak di bawah menuju saluran pembilasan. Ketika piston bergerak turun, saluran buang dan saluran pembilasan dalam kondisi terbuka, gas sisa pembakaran akan keluar melalui saluran pembuangan di dekat knalpot. Setelah gas sisa hasil pembakaran terbuang, kerja mesin 2-tak selesai untuk satu siklus kerja.

A Sistem Kerja Mesin 4 Tak. Four stroke engine adalah sebuah mesin dimana untuk menghasilkan sebuah tenaga memerlukan empat proses langkah naik-turun piston, dua kali rotasi kruk as, dan satu putaran noken as (camshaft). Langkah hisap : Bertujuan untuk memasukkan kabut udara - bahan bakar ke dalam silinder. Sebagaimana tenaga mesin
Cara Kerja Mesin Diesel 2 Tak dan 4 Tak - Kendaraan bermesin diesel pada dasarnya merupakan jenis yang sama dengan kendaraan mesin bensin, keduanya memiliki penggerak berupa motor pembakaran dalam internal combustion engine. Letak perbedaan paling mendasar antara diesel engine dengan petrol engine adalah bagaimana cara pembakaran dari bahan PembakaranPembakaran motor diesel memanfaatkan kompresi. Sedangkan pembakaran pada motor bensin mesin bensin memanfaatkan percikan bunga api dari kalian bingung maksudnya gimana pembakaran dengan kompresi??Secara teoritis rinsip kerja dasar dari jenis motor pembakaran dalam adalah konversi energi. Apa itu konversi energi? Ok singkatnya konversi energi ini adalah perubahan bentuk energi/transformasi energi. Keduanya adalah mesin pembakaran internal yang di design untuk merubah energi kimia yang terkandung dalam bahan bakar menjadi energi mekanik gerak.Contohnya pada kendaraan bermesin bensin ataupun mesin diesel, keduanya sama-sama memerlukan bahan bakar meskipun dengan jenis bahan bakar yang bakar ini akan masuk ke sebuah area yang sama yang kita sebut sebagai silinder. Kita tahu bahwa bahan bakar dan udara merupakan senyawa kimia organik, dimana bahan bakar memiliki potensi energi tertentu yang kita sebut sebagai energi kimia. Di dalam silinder bahan bakar dan udara akan bereaksi dan dipanaskan sampai pada titik nyalanya flash point. Reaksi kimia cepat antara unsur-unsur karbon pada bahan bakar dengan udara sehingga mencapai flash point ini yang kemudian kita sebut sebagai proses pembakaran combustion.Diatas adalah letak kesamaan nya, lalu apa perbedaan nya? Mengapa mesin diesel dan mesin bensin menggunakan bahan bakar yang berbeda?Perbedaan paling mendasar adalah jika dilihat dari prinsip kerjanya. Cara kerja mesin diesel dan cara kerja mesin bensin memiliki perbedaan. Namun pada pembahasan kali ini kita akan membahsa secara lengkap bagaimana cara kerja dari diesel engine motor diesel. Untuk mengetahui letak perbedaannya kalian juga harus membaca mengenai cara kerja dari motor bensin 2 tak dan motor bensin 4 takSecara umum terdapat 2 jenis mesin diesel/jenis motor diesel yang digunakan saat ini, yaitu motor diesel 2 tak dan motor diesel 4 Kerja Mesin dieselCara Kerja Mesin Diesel 2 Tak/Cara Kerja Mesin Diesel 2 LangkahMesin diesel pada umumnya menggunakan mesin dengan prinsip kerja 4 tak, namun ada juga alat-alat yang menggunakan motor diesel 2 tak seperti pada motor penggerak baling-baling kapal. Mesin diesel pada kapal, masih menggunakan sistem 2 tak hal ini berhubungan dengan torsi yang dihasilkan cukup tinggi. Lalu bagaimana kah cara kerja dari mesin diesel 2 tak ini?Dalam mesin diesel dua langkah, siklus lengkap terjadi saat piston bergerak naik dan turun hanya sekali TMA-TMB dan TMB-TMA. Sama seperti pada motor bensin 2 tak setiap langkahnya berlangsung 2 peristiwa yang terjadi di dalam sistem Langkah Isap dan KompresiLangkah isap dimulai dari piston saat di TMB, saat piston ada di TMB udara akan masuk melalui lubang udara yang ada di sekitar dinding silinder. Udara ini dapat terdorong masuk karena pada saluran intake terdapat blower atau turbo yang mendorong udara ke arah bergerak dari TMB ke TMA, memampatkan udara mengkompresikan udara. Ketika langkah kompresi ini akan terjadi perubahan volume. Perubahan volume yang semakin kecil ini akan membuat potensi energi kinetik udara menjadi semakin tinggi. Dimana molekul udara akan saling bergesekan satu sama lain. Gesekan antar molekulnya akan menghasilkan panas. Semakin tinggi perbandingan kompresinya panas yang dihasilkan akan semakin yang dihasilkan selama proses kompresi pada mesin diesel akan melebihi flash point titik bakar solar. Ketika piston hampir mencapai TMA beberapa derajat sebelum TMA, bahan bakar diinjeksikan oleh injektor dan proses pembakaran akan berlangsung secara Langkah Usaha dan Langkah BuangTekanan kompresi yang tinggi pada motor diesel akan membuat suhu udara yang terkompresi menjadi lebih tinggi dari titik nyala solar. Saat bahan bakar diinjeksikan maka udara dan bahan bakar akan langsung mengalami reaksi kimia pembakaran dan menyala dan menimbulkan ledakan. Proses ini akan mendorong piston ke bawah dari TMA ke TMB kemudian menggerakkan poros engkol yang mengirimkan tenaga ke roda. Selanjutnya gas sisa pembakaran akan dibuang melalui saluran dua langkah lebih kecil dan lebih ringan daripada mesin empat langkah, dan cenderung lebih efisien karena menghasilkan tenaga sekali selama setiap putaran bukan sekali selama setiap dua putaran, seperti pada mesin empat langkah. Ini berarti mereka membutuhkan lebih banyak pendinginan dan pelumasan serta mengalami keausan yang lebih Kerja Mesin Diesel 4 Tak/Cara Kerja Mesin Diesel 4 LangkahSumber Langkah IsapPergerakan Piston Piston bergerak dari TMA ke TMBPosisi Katup Katup isap terbuka dan katup buang tertutupKejadian Udara masuk ke dalam silinderPutaran Crankshaft 1800 1/2 PutaranPergerakan piston dari TMA ke TMB menyebabkan ruang silinder menjadi vakum. Akibat kevakuman ini campuran udara dan bahan bakar masuk ke dalam silinder melalui katup isap. Jadi langkah isap ini terjadi jika tekanan di dalam ruang silinder lebih rendah dari tekanan atmosfer. 2. Langkah KompresiPergerakan Piston Piston bergerak dari TMB ke TMAPosisi Katup Katup isap tertutup dan katup buang tertutupKejadian Udara dikompresikan dan diakhir langkah kompresi injektor akan menginjeksikan bahan bakarPutaran Crankshaft 3600 1 PutaranPada langkah kompresi terjadi pengompresian udara di dalam silinder. Kedua katup tertutup. Pada langkah ini terjadi pengecilan volume ruang silinder. Perubahan volume membuat tekanan dan temperaturnya menjadi naik sehingga udara yang terkompresi akan menjadi sangat panas dan mencapai suhu melebihi titik nyala dari solar. Sampai diakhir langkah kompresi injektor akan menyemprotkan bahan bakar dengan tekanan yang tinggi, dan terjadilah pembakaran secara Langkah UsahaPergerakan Piston Piston bergerak dari TMA ke TMBPosisi Katup Katup isap tertutup dan katup buang tertutupKejadian Pada langkah ini dihasilkan tenaga powerPutaran Crankshaft 5400 1 1/2 PutaranPiston bergerak dari TMA ke TMB, kedua katup tertutup. Piston bergerak menuju TMA dan pada kondisi tersebut volume ruang bakar menjadi semakin kecil sehingga tekanan dan temperatur di dalam silinder semakin tinggi. Beberapa derajat sebelum piston mencapai TMA, bahan bakar diinjeksikan dan udara yang telah dikompresikan dengan perbandingan kompresi yang tinggi akan langsung bereaksi dengan bahan bakar untuk melangsungkan proses pembakaran dengan sendirinya self ignition. Gas dari hasil pembakaran akan langsung mengembang karena daya ledak. Gas sisa pembakaran tersebut kemudian akan mendorong piston untuk bergerak kembali dari TMA ke TMB. Pada langkah inilah dihasilkan Langkah BuangPergerakan Piston Piston bergerak dari TMB ke TMAPosisi Katup Katup isap tertutup dan katup buang terbukaKejadian Gas sisa pembakaran dibuang melalui katup buangPutaran Crankshaft 7200 2 PutaranKarna adanya inersia dari flywheel selama proses menyimpan tenaga maka piston akan kembali bergerak translasi dari TMB ke TMA. Katup isap tertutup dan katup buang terbuka. Gerakan piston dari TMB ke TMA ini menyebabkan gas sisa pembakaran terdorong keluar dari ruang silinder, sehingga terjadi pengecilan volume dan pengurangan tekanan.
Olehkarena itu, perawatan mesin diesel pun tak bisa disamakan dengan mesin lainnya. Untuk mengenal lebih jauh mengenai cara kerja mesin diesel dan seluk-beluknya, Setelah memahami cara kerja mesin diesel, Anda bisa mulai berburu mobil-mobil incaran Anda yang menggunakan mesin diesel. Beberapa kelebihan mesin diesel di antaranya. Pengertian Mesin 2 Tak dan Prinsip KerjanyaPengertian 2 Tak - Mesin 2 tak atau 2 stroke adalah mesin pembakaran yang dalam satu kali siklus pembakarannya terjadi 2 kali langkah piston, berbeda dengan putaran mesin 4 tak atau 4 stroke yang berprinsip 4 kali langkah piston dalam satu kali siklus pembakaran, walaupun keempat proses intake, kompresi, tenaga, pembuangan juga terjadi. Mesin 2 tak juga telah digunakan dalam mesin Motor 2 Langkah1. Blok mesinBlok silinder berfungsi sebagai tempat untuk melakukan perubahan energi dari proses pembakaran hingga menghasilkan energi putar. Fungsi utama blok silinder ini yakni sebagai tempat piston untuk naik turun. Seperti namanya, bentuk komponen ini seperti rongga silinder, didalam rongga inilah pistton Head cylinderKepala silinder memiliki dua fungsi yakni sebagai penutup rongga silinder dan sebagai tempat terjadinya pembakaran. Secara teori, pembakaran mesin memang terjadi pada ruang bakar, tapi posisi ruang bakar ini ada di kepala PistonPiston atau seher adalah komponen berbentuk tabung dengan diameter tertentu sesuai cc mesin. Diameter piston ini pastinya lebih kecil daripada diameter rongga silinder, karena posisi piston ada didalam rongga silinder. Fungsi piston untuk mengatur besar kecilnya volume ruang piston bergerak ke titik mati atas maka volume ruang bakar akan mengecil, kondisi ini menyebabkan campuran udara dan bahan bakar yang sebelumnya masuk ke ruang bakar akan dikompresikan. Hasilnya temperatur dan tekanan gas itu meningkat, kemudian busi memercikan bunga api sehingga terjadilah proses piston terdapat tiga buah ring ysng bersifat elastis sehingga bisa menempel pada permukaan silinder. Melalui ring ini, kebocoran gas saat kompresi akan Batang pistonPosisi batang piston atau connecting rod berada dibawah piston dan diatas poros engkol. Fungsinya hanya satu yakni menghubungkan gerak naik turun piston ke poros engkol. Saat pembakaran terjadi, maka energi expansi pembakaran akan mendorong piston kearah bawah dengan daya yang tidak kecil. Batang piston dipastikan mampu menghantarkan daya dorong ini ke poros engkol tanpa bengkok. Oleh karena itu, connecting rod terbuat dari Poros engkolPoros engkol berfungsi untuk mengubah arah gerakan dari awalnya naik turun menjadi gerakan rotasi atau putar. Sama seperti batang penghubung, poros engkol juga dituntut kuat untuk menahan dorongan hasil pembakaran dan kuat membalikan putaran agar piston mampu kembali bergerak naik. Untuk itulah, pada motor silinder tunggal biasanya desain poros engkol akan disertai dengan pemberat agar putarannya Intake portFungsi saluran ini adalah tempat untuk masuknya campuran udara dan bensin menuju ruang engkol. Campuram bensi dan udara akan disalurkan ke ruang bakar ketika selesai proses pembakaran. Gerakan piston kearah bawah akan mendorong gas ini bergerak ke atas melalui saluran berbeda mesin 2 tak dari mesin 4 tak adalah tidak adanya mekanisme katup pada motor bakar 2 tak. Hal itu karena saluran intake secara langsung terhubung dengan ruang engkol. Dalam mesin dua tak baik ruang bakar atau ruang diatas piston dan ruang engkol yang terletak dibawah piston akan berpengaruh terhadap gerakan Exhaust portSama halnya seperti intake port, exhaust port merupakan saluran yang menghubungkan ruang bakar dengan knalpot mesin. Fungsinya, sebagai saluran buang dari gas sisa pembakaran. Saluran ini juga tidak memiliki mekanisme katup karena memanfatkan pergerakan piston untuk buka tutup Transfer portSementara saluran transfer merupakan saluran khusus yang menghubungkan ruang bakar dengan ruang engkol. Sama seperti dua saluran diatas saluran ini juga tidak dilengkapi mekanisme katup. Hanya menggunakan pergerakan piston untuk mengatur pembukaan dan penutupan saluran. Fungsi saluran ini adalah sebagai tempat mengalirnya campuran udara dan bensin yang berada pada ruang engkol menuju ruang bakar. Cara kerjanya dengan memanfaatkan gerakan piston, saat piston bergerak kebawah otomatis transfer port terbuka dan saluran intake akan tertutup. Gerakan piston ini menimbulkan dorongan diruang engkol sehingga udara didalam ruang engkol akan terdorong naik melalui saluran Spark plug/busiFungsinya sebagai pemercik api padsa motor bakar bensin. Baik mesin 4 tak atau 2 tak menggunakan busi sebagai pemicu pembakaran. Busi ini bekerja dengan mengubah energi listrik menjadi api. Prinsip Kerja Motor 2 langkahSebelum kita membahas prinsip kerja perlu diketahui istilah baku di dunia otomotif seperti berikutTMA Titik Mati Atas atau dalam bahasa inggris TDC Top Dead Centre menjelaskan posisi piston saat berada paling atas di dalam silinder atau paling atas pada putaran stang piston di poros Titik Mati Bawah atau dalam bahasa inggris BDC Bottom Dead Centre dari mekanisme TMA yang menjelaskan dimana posisi piston saat berada pada titik paling bawah dalam silinder mesinRuang Bilas adalah suatu ruangan yang terletak dibawah piston atau di poros engkol crankshaft, sering juga disebut dengan bak engkol crankcase yang berfungsi supaya gas hasil campuran udara, bahan bakar dan pelumas agar bisa tercampur scavenging adalah mekasnisme pengeluaran gas yang telah terbakar dan proses pemasukan gas untuk pembakaran dalam ruang mesin 2 tak saat piston bergerak dari TMA ke TMB Membuat proses sebagai berikutSaat bergerak dari TMA ke TMB, piston akan menekan ruang bilas yang berada di bawahnya. Semakin menurun piston dari TMA menuju TMB maka akan semakin meningkat juga tekanan di ruang titik tertentu, piston ring piston akan melewati lubang pembuangan exhaust port dan lubang transfer transfer port, dan lubang bilas. Umumnya ring piston akan melewati lubang pembuangan terlebih saat ring piston melewati lubang pembuangan, gas di dalam ruang bakar keluar melalui lubang pembuangan exhaust port.Pada saat ring piston melewati lubang pemasukan , gas yang tertekan di dalam ruang bilas akan terpompa masuk ke dalam ruang bakar, sekaligus mendorong keluar gas yang ada di dalam ruang bakar menuju lubang terus menekan ruang bilas sampai titik TMB, sekaligus memompa gas dalam ruang bilas menuju ke dalam ruang mesin 2 tak saat piston bergerak dari TMB ke TMA membuat proses sebagai berikutSaat piston bergerak ke TMA akan menghisap campuran bahan bakar, oli samping dalam crankcase, dan sebagai dari usahanya maka petal katub reed valve, membran atau katub buluh akan terbuka dan menghisap bensin serta udara dari ring atau piston melewati lubang buang exhaust port, lubang transfer transfer port, dan juga lubang bilas menuju ke TMA maka gas baru yang terjebak di permukaan muka piston tadi akan dikompresikan oleh tekanan piston dan kemudian proses saat sebelum piston menuju puncak dari TMA, busi akan memetikan bunga api untuk membakar campuran tadi yang telah dikompresikan, alasan kenapa waktu nyala meletiknya api dari busi beberapa saat sebelum piston ke TMA bertujuan agar puncak tekanan kompresi terjadi saat piston akan terdorong menuju kesimpulannya Mesin dua langkah bekerja dengan dua kali gerakan piston atau sama dengan putaran connecting rod sebanyak satu kali dapat dihasilkan satu tenaga mesin. Demikian pembahasan mengenai cara kerja dari cara kerja mesin 2 tak. Semoga dapat bermanfaat. Salam Teknika!
Saatbekerja dengan membuka dan menutup di lubang-lubang cylinder oleh turun naiknya piston, karena itu yang dimana lubang-lubang terbuka dan tertutup yang ditentukan oleh posisi dan ukuran lubang itu ini yang dinamakan pada mesin 2 tak yaitu port timing. Piston valve system
Banyak perbedaan yang cukup mendasar antara mesin disel 2 Tak dan 4 Tak, mengenal mesin 2 tak dan 4 tak pada senbah mesin lebih tepatnya pada Disel hampir semua orang mengetahuinya, hal tersebut sudah sangat umum karena banyak sekali perbedaan yang wajib dipahami, apalagi bagi para engineering. lalu apakah yang membedakan ke dua mesin ini, simak ulasan ini sampai selesai. Disini kita akan membahas apa beda mesin 2 tak dan 4 tak sampai tuntas, semoga bermanfaat. Cara Kerja Mesin Disel 4 Tak dan 2 Tak Secara Teoritis Cara kerja motor disel Empat Tak / Empat Langkah. Seperti pada motor empat tak dengan bahan bakar bensin, motor disel empat tak juga bekerja dalam empat langkah, dua putaran atau 720 derajat berturut-turut dalam silinder terdapat langkah masuk isap, langkah kompresi, langkah usaha dan langkah keluar atau pembuangan. 1. Langkah Masuk / Isap Katup masuk membuka. Torak bergerak dari TMA Titik Mati Atas ke Titik Mati Bawah. Jadi poros engkol memutar terus 180 derajat tekanan di dalam silinder rendah. Disebabkan selisih tekanan antara udara luar dan tekanan rendah di dalam silinder, maka udara mengalir ke dalam silinder. Tidak terdapat katup pemadam seperti pada motor bensin. Udara dapat mengalir masuk tidak terbatas. Motor disel bekerja dengan sisa udara, pada motor-motor besar dengan muatan penuh kira-kira mencapai jumlah 100%, pada motor kecil sekitar 40% Proses silinder dengan tekanan. oleh sebab itu lebih banyak mengalir dalam silinder dari pada pengisian secara alami. 2. Langkah Kompresi Selama langkah kompresi katup masuk dan kaatup keluar tertutup, Torak bergerak dan TMB dan TMA. Poros engkol berputar terus 180 derajat lagi, udara yang ada di dalam silinder, dimanfaatkan kuat di atas torak dan menyebabkan temperatur naik. 3. Langkah Usaha Selama langka usaha katup masuk dan katup keluar dalam keadaan tertutup. Pada akhirnya langkah kompresi, pompa penyemprotan bertekanan tinggi itu menyemprotkan sejumlah bahan bakar dengan ketentuan sempurna ke dalam udara yang manfaatkan oleh udara panas oleh pengabut. Bahan bakar itu terbagi sangat halus dan bercampur dengan udara panas, karena temperatur tinggi dari udara yang di manfaat kan, maka bahan bakar itu langsung terbakar. Akibatnya, Tekanan naik dan torak bergerak dari TMA ke TMB. Poros engkol terus berputar lagi 180 derajat. untuk pembakaran bahan bakar satu gram secara teoritis diperlukan 15,84 gram udara, secara praktis untuk pembakaran yang baik. Campuran bahan bakar udara yang sempurna memerlukan perbandingan sempurna 20 – 25 gram udara. 4. Langkah Keluar Pembuangan Pada akhir langka keluar katup pembuangan membuka torak bergerak dari TMB ke TMA dan mendorong gas-gas pembakaran ke luar melalui katup buangan yang terbuka. jadi dipandang secara teoritis pada motor disel empat tak, katup masuk isap dan katup keluar Buang bersama-sama menutup 360 derajat dan hanya 180 derajat menghasilkan udara. Semakin banyak silinder sebuah motor, maka langkah usaha akan semakin banyak setiap 720 derajat atau membuat dua putaran. Dalam praktek, saat-saat pembukaan dan penutupan, katup-katup itu kedudukannya berbeda dibandingkan teorinya, Contoh Pemasukan membuka 10 drajat sebelum TMA Pembukaan pendahuluan katup masuk. Menutup 49 derajat detelah TMB Penutupan kemudian membuka 46 derajat sebalum TMB Pembukaan pendahuluan pengeluaran. Menutup 13 derajat setelah TMA Penutuoan kemudian pengeluaran. angka-angka tersebut dinyatakan dengan jelas dalam diagram gambar 2. 5. Pemasukan dan Pembukaan Pendahuluan Semakin torak itu mendekati akhir langkah buang, maka kecepatan semakin berkurang, gas-gas keluar yang didorong keluar oleh torak hanya sedikit memperlambat, karena timbul kekurangan tekanan di dalam udara silinder saat mendekati langkah akhir pembuangan. Oleh sebab itu, pada torak itu udara yang digunakan untuk memperoleh pengisian silinder yang lebih baik. Dengan dibukanya katup masuk sebelum TMA, kita juga akan memperoleh gelombang-gelombang tekanan pada masukan dan pengeluaran untuk memperbaiki pengisian silinder. semakin lebih baik hal itu, tiap siklus yang dapat keluar bebas pada pembakaran semakin bertambah panas dan semakin tinggi daya motor itu untuk volume langkah yang sama. 6. Pemasukan Yang Menutup Kemudian Katup masuk baru menutup setelah titik mati bawah, dengan demikian kelembaban massa dari udara yang mengalir masuk dapat dipergunakan, kelembaban masa itu mengatur agar terjadi pengisian kemudian yang tertentu, walaupun torak telah bergerak kembali keatas. Pengisian kemudian sebenarnya tergantung kecepatan udara yang mengalir masuk pada motor-motor yang berputar cepat, katup-katup masuk akan menutup kemudian karena kecepatan udara yang tinggi dibanding motor-motor yang berputar dengan lambat, Dengan pengelolaan katup masuk dengan penutupan kemudian itu, pengisian silinder diperbaiki. 7. Pembuangan Dengan Pembukaan Dahulu Dengan dibukanya katup buang sebelum TMB, gas-gas buang akan keluar karena adanya tekanan lebih di dalam silinder. Maka torak pada gerak ke atas mendapatkan tekanan lawan yang kecil, sehingga menghasilkan keuntungan daya. 8. Pembuangan Dengan Penutupan Kemudian Jika torak pada langkah akhir langkah keluar letaknya dalam TMA, maka di dalam ruang bakar masih terdapat banyak gas sisa. Jika itu masih ada, maka gas baru yang dapat di hisap ke dalam sedikit dan menyebabkan kerugian daya. Dengan masih dibukanya katup buang itu sejenak setelah TMA, maka sisa gas buang ikut keluar. karena kelembaban masa, di atas torak timbul kekurangan tekanan, di mana udara segar melalui katup masuk yang terbuka dapat di hisap. Dengan demikian perhatikan kembali uraian diatas, terdapat suatu saat katup isap dan buang masuk dan keluar sama-sama membuka. Saat itu disebut katup-terhimpit dan besarnya sebagai contoh 10 derajat + 13 derajat = 23 derajat. Walaupun motor-motor disel dua tak tidak terdapat pada motor-motor sedan, kita akan membicarakan juga jenis ini untuk kelengkapannya. Berlawanan dengan motor empat tak, di mana setiap putaran poros engkol terdapat sebuah penyemprotan bahan bakar, maka pada motor dua tak setiap satu putaran mendapat sebuah penyemprotan. Kita juga tidak bisa menyatakan dua langkah masuk isap, kompresi usaha dan buangan keluar seperti dalam arti motor empat langkah. Walaupun pada motor dua tak tiap putaran mengandung suatu pembakaran dan dalam persamaan dengan motor bensin dua tak beberapa unsur-unsur yang memberatkan bisa dihilangkan, namun motor disel dua tak memberikan daya lebih besar daripada motor empat langkah dengan isi silinder sama dan jumlah putaran yang sama. Pada motor disel dua tak pembilasan berlangsung khusus dengan udara dan bukan dengan campuran udara dan bahan bakar seperti pada motor bensin dua tak. Maka, pada pembilasan tidak kehilangan bahan bakar. Pada beban nol, sebuah motor disel dua tak berputar dengan teratur. Pengisian silinder dengan udara selalu maksimal. Banyak putaran motor itu diatur oleh banyak bahan bakar yang disemprotkan. 1. Bekerjanya Motor Dua Langkah Dengan Katup-katup Buang Silinder disel dua langkah dilengkapi dengan deretan lubang-lubang masuk, yang oleh torak itu terbuka bebas jika dalam keadaan TMB. Melalui lubang-lubang udara didorong kedalam silinder oleh kompresor. Katup-katup keluar membuka oleh aliran udara masuk, gas lubang yang masih ada dalam silinder di bilas ke luar. Jika torak bergerak ke atas, lubang-lubang masuk tertutup dan selanjutnya katup-katup buang menutup, silinder telah dengan udara murni yang dimanfaatkan. Sebelum torak mencapai dekat TMA, maka sejumlah tertentu bahan bakar di semprotkan ke dalam udara yang dimanfaatkan panas dan timbul pembakaran. Karena tekanan gas-gas pembakaran, torak itu didorong ke bawah. Motor menghasilkan daya , kira-kira pada pertengahan jalan panjang langkah katup-katup keluar membuka lagi. Sebagian dari gas yang terbakar dapat mulai ke luar. Kelanjutannya dari gerak torak ke bawah, dalam waktu singkat lubang-lubang masuk akan terbuka bebas dan udara yang mengalir masuk akan mendorong sisa gas pembakaran keluar. Sebuah siklus dua langkah dapat di mulai. Oleh sifat pembilasan nya, kita mengatakan pembilasan aliran memanjang. Gas-gas bekas di bilas ke luar menurut arah memanjang silinder itu. Gambar di atas menunjukkan sebuah motor dua langkah berbentuk V buatan Deroit. Tipe motor ini dapat mempunyai empat katup ke luar tiap silinder. Di sebelah kanan silinder tampak lubang isap sangat jelas, perhatikan juga pada poros-poros nok yang ada di atasnya dan pengungkit-pengungkit untuk melayani katup-katup dan pengabut pompa penyemprot itu. 2. Bekerja nya Motor Dua Langkah Tanpa Katup Pada konstruksi jenis motor ini gas buang di bilas ke luar bukan melalui katup-katup tetapi melalui lubang-lubang saluran. Oleh arah nya gas-gas yang mengikuti dalam silinder itu, kita nama kan jenis pembilasan ini juga pembilasan membalik. Dengan memperhatikan gambar di bawah ini, kita dapat mengikuti proses kerja A B C dan D. Pada gambar A terjadi pembilasan. Kompresor roots mendorong udara segar ke dalam melalui lubang-lubang isap. Ini di buat sedemikian sehingga udara mengalir ke atas dalam silinder untuk keluar dengan sendirinya. Untuk sebuah pembilasan silinder yang baik dapat dipastikan bila sebagian udara segar ikut mengalir ke luar. Torak yang bergerak ke atas Gambar B di bawah pertama kali menutup lubang-lubang saluran masuk dan selanjutnya lubang-lubang pengeluaran. Sedikit sebelum ATM itu, bahan bakar di semprot kan gambar C. Jika torak itu bergerak ke bawah, oleh tekanan pembakaran pada gambar D, maka oleh tepi atas dari torak itu pertama-tama lubang pengeluaran akan terbuka bebas, sehingga sebagian besar dari gas sisa dapat keluar dan kemudian lubang-lubang pemasukan, dari sinilah sebuah siklus akan dimulai. Keuntungan dari motor dua langkah tanpa katup-katup adalah konstruksi nya sederhana, namun pembilasan nya kurang baik dan langkah usaha berguna yang pendek, dengan akibat daya rendah. Efisiensi Yang dimaksud dengan efisiensi motor adalah perbandingan antara daya yang dihasilkan oleh motor itu dan daya panas yang diberikan dalam bahan bakar. Efisiensi dinyatakan dengan huruf latin eta Î. Îáµ—áµ’áµ— = Îáµ— x Îᵐ Îáµ— redemen teoretis atau termal Îᵏ derajat kualitas Îᵐ efisiensi mekanik Efisiensi teoritis atau termal ialah efisiensi sebuah motor ideal. Pada motor ideal ini antara lain setelah pembakaran tidak terdapat sisa gas dalam silinder atau tidak terdapat pertukaran panas antara ruang bakar dan sisa dari motor itu. juga pada siklus usaha dianggap tidak ada kerugian gas dan bahan bakar terbakar sempurna. Efisiensi teoritis atau termal terletak antara 0,50 dan 0,65. Derajat kualitas juga disebut gutegrad adalah suatu ukuran untuk kualitas dari motor yang sebenarnya. Dengan kalimat lain berapakah daya motor sebenarnya itu dibandingkan dengan motor ideal. Angka-angka empiris Motor bensin Îᵏ = 0,4 sampai 0,7 Motor disel Îᵏ = 0,6 sampai 0,8 Yang dimaksud dengan efisiensi mekanik ialah semua kerugian ialah akibat gesekan dan pergerakan perangkat-perangkat pembantu diikutsertakan. Angka untuk efisiensi mekanik terletak antara 0,8 dan 0,9. Dengan demikian, efisiensi total akan terletak pada harga-harga seperti dibawah ini Motor bensin Îáµ—áµ’áµ— = 0,16 – 0,41 Motor disel Îáµ—áµ’áµ— = 0,24 – 0,35 Dalam praktek nya efisiensi motor bensin bergerak antara 0,25 – 0,30. Sebagai bandingan, efisiensi motor disel kendaraan sedan antara 0,30-0,35, sedangkan motor-motor disel besar mempunyai redemen yang lebih besar dari 0,35. Salah satu faktor-faktor penyebab yang terbesar pada efisiensi adalah perbandingan kompresi. Kenaikan perbandingan kompresi tertentu. Akan berarti pada penambahan efisiensi teoritis. Hal ini menerangkan kebaikan efisiensi sebagian motor disel. Perbandingan kompresi rata-rata motor disel kendaraan sedan terletak bulat 221, sedangkan pada motor bensin maksimal 1001. Di samping perbandingan kompresi masih ada faktor-faktor lain yang berpengaruh positif terhadap efisiensi motor disel itu. Begitu lubang saluran masuk tidak mempunyai katup gas dan tidak ada vanturi, sehingga terjadi kerugian aliran sedikit yang memperbaiki derajat kualitas. Juga pembentukan campuran yang lebih baik dan merata pada penyemprotan sempurna suatu perbaikan derajat kualitas. Di bawah ini adalah diagram Sankey yang menyatakan aliran-aliran energi pada mobil sedan. Semoga bermanfaat Sumber Buku Mesin Disel

BagikanKomentar. JAKARTA, Mobil modern tidak membutuhkan pemanasan terlalu lama untuk mencapai suhu kerja mesin. Hanya dalam hitungan menit sejak jantung pacu dinyalakan, sudah bisa langsung digunakan untuk menunjang aktivitas. Tentunya, selain karena di Indonesia tidak ada musim dingin, sehingga suhu kerja mesin cepat tercapai

Cara kerja mesiin diesel 2 tak a. kejadian daur 2 langkah/cara kerja mesin diesel 2 tak Sebuah daur dua langkahkerja mesin diesek 2 tak diselesaikan dalam dua2 langkah, atau satu putaran poros engkol mesin diesel, sedangkan daur empat langkah memerlukan dua putaran. Perbedaan utama antara mesin diesel 2 tak dan mesin diesel 4 tak adalah metode pengeluaran gas yang telah dibakar dan pengisian silinder dengan udara segar. Dalam mesin diesel 4 tak operasi ini dilakukan oleh torak mesin selama langkag buang dan isap. Dalam mesin diesel 2 tak operasi ini dilakukan dekat oleh pompa atau penghembus udara yang terpisah. berikut ini adalah gambar cara kerja mesin diesel 2 tak Gambar. 2-2. Pembilasan dari daur dua langkahSumber Bambang Priambodo 1995 Kejadian kompresi, pembakaran dan ekspansi tidak berbeda dengan kejadian pada mesin diesel 4 tak. Pengeluaran gas sisa dan pengisian silinder dengan pengisian udara segar dilakukan sebagai berikut Kalau torak telah menjalani 80 sampai 85 persen dari langkah ekspansi, katup buang,e, e terbuka, gas buang dilepaskan dan mulai lari dari silinder dan tekanan dalam silinder mulai turun. Torak meneruskan gerak menuju dan akhirnya membuka lubang s,s, yaitu lubang tempat lewat udara yang agak ditekan, sehingga udara mulai memasuku silinder, Udara ini tekananya agak lebih tinggi dari pada gas panas didalam silinder, sehingga mendorongnya keluar melalui katup e,e gb. 2-2b ke udara luar. Operasi ini disebut membilas, udara yang dimasukan disebut udara bilas, dan lubang tempat udara masuk disebut lubang bilas. Kira-kira pada saat torak pada langkah naik menutup lubang s, s, maka katup buang e, e juga ditutup gb. 2-2e dan langkah kompresi dimulai. Keuntungan operasi mesin diesel 2 tak adalah penghilangan dua langkah pengisian yang diperlukan dalam operasi empat langkah. Jadi silinder memberikan satu langkah daya untuk tiap putaran mesin kalau dibandingkan dengan satu langkah daya untuk tiap dua putaran pada mesin daur empat langkah. Kalau semua kondisi yang lain misalnya lubang, langkah, kecepatan dan tekanan gas efektif rata-rata sama, maka mesin dua langkah akan membangkitkan daya dua kali lipat daripada mesin empat langkah. Ini berarti juga bahwa mesin dua langkah dalam garis besarnya mempunyai berat setengah dari mesin diesel 4 tak dari daya yang sama dan menghasilkan momen puntir yang lebih rata. Tetapi, harus dicatat bahwa ini hanya benar untuk mesin yang memiliki tekanan efektif rata—rata sama. Jadi mesin dua langkah dengan karter yang membilas mempunyai teakanan efektif rata-rata yang rendah, sehingga membangkitkan daya yang kurang dari mesin empat langkah yang sebanding. Di lain pihak, mesin empat langkah dengan pengisian lanjut dapat membangkitkan daya yang sama atau lebih besar daripada mesin dualangkah dari perpindahan yang sama. Keuntungan ini sangat penting pada kapal dan lokomotip sehingga penggunaan mesin dua langkah pada instalasi ini jauh lebih banyak daripada mesin empat langkah, khususnya dalam unit daya besar. Kerugian dari semua mesin dua langkah, adalah suhu yang tinggi dari torak dan kepala silinder yang diakibatkan fakta bahwa pembakaran terjadi pada tiap ini adalah gambar cara kerja mesin diesel 2 tak. pada gambar 2-3 yaitu gambar pembilasan aliran silang mesin diesel 2 tak, pada gambar 2-4 yaiutu gambar Pembilasan aliranlingkar atau aliran balik mesin diesel 2 tak, dan gambar 2-5 yaitu gambar Pembilasan aliran balik dalam mesin kerja ganda mesin diesel 2 tak. Sumber Bambang Priambodo, 1995 b. Metoda Pembilasan mesin diesel 2 tak hanya mengilustrasikan salah satu dari beberpa metoda dari pembilasan silinder. Dalam beberapa mesin gas buangnya dibiarkan keluar melalui lubang, yang dinbuka oleh torak seperti lubang pembilasan s,s 2 Tergantung pada letak lubang buang terhadap lubang bilas, terdapat dua metoda pembilasan yang dasarnya berbeda pembilasan aliran silang cross flow gb 2-3 dan pembilasan lingkar loop atau aliran balik return flow c. Pembilasan aliran silang mesin diesel 2 tak. Dengan metote ini torak terlebih dulu membuka lubang buang e,e, dan melipatkan tekanan dengan menurun lebih jauh maka torak membuka lubang bilas s,s. dan mulai memasukan udara agak bertekanan yang arusnya terutama diarahkan keatas, seperti ditunjukkan tanda panah, sehingga mendorong keluar gas buang melalui lubang e,e. Setelah melampui torak terlebih dahulu menutup lubang bilas dan segera setelah itu menutup lubang buang. Kenyataan bahwa lubang buang tertutup setelah lubang bilas memungkinkan sebagian dari udara pengisian lari dari silinder. Ini merupakan kerugian dari skema bilas tersebut. Tetapi juga mempunyai keuntungan tertentu, yaitu kesederhanaan konstruksi dan pemeliharaan, dengan tidak adanya katup yang harus tetap rapat. Beberapa mesin besar kecepatan rendah menggunakan sekema pembilasan arus silang yang diperbaiki dengan tambahan katup searah yang terlrtak didekat lubang bilas. Dalam kasus ini lubang bilas dibuat sama tinggi atau bahkan agak lebih tinggi daripada lubang buang. Seperti ditunjukkan dalam gb. 1-5. Oleh karenanya lubang bilas dibuka oleh torak secara serentak dengan atau sedikit sebelum lubang buang; tetapi katup searah mencegah gas buang masuk kedalam penerima udara bilas. Segera setelah tekanan didalam silinder turun dibawah tekanan dalam penerima udara, maka tekanan dalam penerima udara membuka katup searah dan pemasukan udara bilas dimulai. Pembilasan dilanjutkan sampai lubang bilas maupun lubang buang ditutup oleh torak. Skema ini memberikan efisiensi pembilasan, yang menghasilkan tekanan efektif rata-rata lebih tinggi pada biaya nominal pada katup dan pemeliharaanya. d. Pembilasan lingkar. Mirip dengan aliran silang dalam hal urutan pembukaan lubang. Tetapi arah aliran uydara berbeda, seperti ditunjukan dengan tanda anak adalah bahwa keseluruhan penerimaan udara bilas dan penerima gas buang terletak pada sisi yang sama dari silinder, sehingga lebih mudah dicapai. Skema ini sesuai untu mesin kerja ganda, karena dengan mesin tersebut maka operasi katup buang gb. 2-2 untuk ruang bakar bawah menjadi sangat rumit. Kalau digunakan pada mesin kerja ganda skema ini disempurnakan dengan memasang katup buang putar,r. selama pelepasan gas buang, maka katupr, terbuka, tetapi katup ini tertutup kalau torak menutupi lubang bilas pada langkah balik. Dengan pengaturan ini untuk melepaskan pengisian udara selama awal langkah kompresi, ketika lubang buang ditutup oleh torak, katup putar dibuka dan dbuat siap untuk daur berikutnya. Seperti dapat dilihat pada gambar 2-5, panjang torak dibuat tepat sama dengan panjang langkah untuk mengendalikan kejadian pembuangan dan pembilasan secara bergantian oleh tepi atas dan bawah dari torak. e. Skema torak berlawanan Torak bawah mengendalikan lubang buang, torak atas mengendalikan lubang bilas. Untuk mendapatkan pelepasan awal dari gas buang dengan membuka lubang buange, mendahului lubang bilass, maka engkol dari poros engkol bawah dimajukan trerhadap engkol dari poros engkol atas, sehingga mendahului engkol atas 10 sampai 15 derajat. Dengan cara ini maka lubang buang terbuka terlebih dahulu ; kalau tekanan telah cukup diturunkan, lubang bilas dibuka gb,2-6b dan pembilasan berlangsung. Setelah lubang buang ditutup, dilakukan tambahan pemasukan udara sampai lubang bilas juga tertutup kemudian dilakukan kompresi sedikit sebelum torak mencapai titik yang paling berdekatan dengan torak yang lain, bahan bakar diinjeksikan, menyala, dan terbakar sementara langkah ekspansi dimulai gb. 2-6 d. Putaran dari poros engkol atas dan bawah diteruskan kepada poros engkol utama dibawah oleh poros vertikal perantara dan dua pasang roda gigi payung Gb. 2-6. Operasi torak berlawanan.Sum ber Bambang Priambodo , 1995 Keuntungan dari skema ini adalah Pembilasan yang efisien dari silinder sehingga ditimbulkan daya lebih besar Tidak ada katup dan roda gigi pengoperasian katup. Tidak ada kepala silinder, yang karena bentuknya rumit merupakan sumber gangguan dalam operasi mesin. Kemudahan pencapaian untu inspeksi dan perbaikan dari bagian pada umumnya. Kedua skema pembilasan gb 2-2 dan 2-6 juga diklasifikasikan sebagai pembilasan sealiran uniflow. Dalam kedua kasus maka gas buang dan udara bilas mengalir dalam arah yang sama, sehingga kurang peluangnya untuk pembentukan turbolensi yang tidak dapat dihindarkan pada pembilasan aliran silang dan aliran balik. Pengisian Lanjut. supercharging Mesin diesel 2 Tak Pengisian lanjut bertujuan untuk menaikkan daya mesin yang perpindahan torak dan kecepatannya telah ditentukan. Dalam mesin disel daya dibangkitkan oleh pembakaran bahan bakar, dan kalau dikehendaki kenaikan daya, bahan bakar yang dibakar harus lebih banyak sehingga udara harus lebih banyak tersedia karena setiap pound bahan bakar memerlukan sejumlah udara tertentu, kondisi lainnya sama, yaitu suatu volume, atau ruang akan memegang berat udara yang lebih besar, kalu tekanan udara dinaikkan. Maka pengisian lanjut didapatkan dengan suatu tekanan yang lebih tinggi pada awal langkah kompresi. Untuk menaikkan tekanan udara mesin empat langkah, pengisian udara tidak dihisap ke dalam silinder atau dikatakan, tidak dimasukkan dengan penghisapan alamiah oleh torak yang mundur, tetapi oleh pompa ataupenghembus udara yang tiga jenis penghembus yang digunakan 1 Pompa torak ulak-alik yang mirip dengan kompresor udara2 Penghembus perpindahan positip yang perputar dari jenis roots, dan3 Penghembus kecepatan tinggi Pompa sentrifugal, biasanya digerakkan oleh turbin gas yang memanfaatkan energi kinetik yang dari gas buang Kalau pengisian lanjut digunakan pada mesin empat langkah,perubahan utama yang diperlukan dalam disain adalah perubahan pengaturan waktu dari katup pemasukan dan pembuangan. Waktu pembukaan katup pemasukan dimajukan dan penutupan katup buang diperlambat,kedua katup dirancang untuk tetap terbuka secara serentak untuk sekitar 50 sampai 100 derajat, pemilihanya tergantung pada kecepatan normal mesin. Pembukaan secara serentak ini disebut tumpang tindih overlapping. Keuntungan yang diperoleh dari tumpang tindih banyak adalah pembilasan yang lebih baik pada ruang bakar. Hasil pengujian menunjukkan bahwa tumpang tindih sebesar 40 sampai 50 derajat akan menaikan keluaran daya mesin dari sekitar 5 persen – kalu pengisian lanjut sangat kecil, hanya untuk meniadakan vakuum dalam silinder utama langkah isap – sampai 8 persen dengan tekanan pengisian lanjut 12 in air raksa. Sebagai perbandingan tumpang tindih 10 sampai 20 derajat yang umum digunakan dalam mesin tanpa pengisian lanjut. Daya total yang diperoleh karena pengisian lanjut bervariasi dari 20 sampai 50 persen, tergantung pada tekanan pengisian lanjut, yang pada mesin disel sekarang bervariasi dari 5 sampai sekitar12 in air raksa. Perlu dicatat bahwa bersama kenaikan tekanan tekanan efektif rata-rata, pengisian lanjut juga menaikkan tekanan penyalaan maksimum dan suhu maksimum. Sebaliknya, penggunaan bahan bakar tiap daya kuda- jam biasanya berkurang dengan pengisian lanjut, karena sebagai akibat dari kenaikan turbolensi udara, dilakukan pengadukan yang lebih baik antara udara dan bahan bakar udara pengisian, sehingga pembakaran bahan bakar menjadi lebih baik, dan juga karena efisiensi mekanis dari mesin meningkat- dari kenyataan bahwa keluaranya dinaikkan lebih besar daripada kerugian mekanisnya. Mesin dua langkah biasanya telah mempunyai penghembus untuk udara bilas dan pengisian lanjut dapat diperoleh secara mudah dengan menaikkan jumlah dan tekanan udara bilas. Sebagai tambahan, sedikit perubahan dari pengaturan waktu buang dan waktu bilas untuk mendapatkan udara bilas lebih banyak dari awal langkah kompresi. Kecepatan Torak Mesin Diesel 2 TakKecepatan poros engkol dapat dianggap seragam tetapi, perjalanan torak tidak demikian pada titik mati torak d iam, kecepatanya nol, pada saat torak mulai bergerak, kecepatanya meningkat sedikit demi sedikit dan mencapai maksimum disekitar pertengahan langkah, dari sini kecepatan torak mulai menurun dan pada titik mati yang berlawanan torak menjadi berhenti lagi. Jadi kecepatan torak bervariasi dengan waktu, Untuk beberapa perhitungn perlu diketahui kecepatan torak rata-rata, yaitu kecepatan konstan yang diperlukan oleh torak untuk bergerak mencapai jarak yang sama seperti kalau ditempuh dengan kecepatan variabel. Kecepatan rata-rata biasanya disebutkan secara sederhana sebagai kecepatan torak dari mesin. Umumnya mengukur kecepatan torak dalam feet tiap menit. Jarak yang dijalani oleh torak dalam satu menit sama dengan dua langkah yang dibuat tiap putaran dikalikan jumlah putaran tiap menit dan merupakan kecepatan torak rata- rata. sumber pengantar teknologi perkapalan
aZ2Rg.
  • 6jlaqye2az.pages.dev/314
  • 6jlaqye2az.pages.dev/55
  • 6jlaqye2az.pages.dev/6
  • 6jlaqye2az.pages.dev/313
  • 6jlaqye2az.pages.dev/6
  • 6jlaqye2az.pages.dev/212
  • 6jlaqye2az.pages.dev/334
  • 6jlaqye2az.pages.dev/228
  • 6jlaqye2az.pages.dev/370
  • cara kerja mesin diesel 2 tak